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The allylic substitution reaction of allylic alcohol derivatives
with nucleophiles catalyzed by transition-metal complexes is one
of the most successful and reliable methods in organic synthesis.1

The reaction proceeds via (η-allyl)metal species to afford a wide
variety of allylated products with high chemo-, regio-, and
stereoselectivities.1 In sharp contrast, much less attention has been
paid to the propargylic substitution reaction of propargylic alcohol
derivatives with nucleophiles.2 The Nicholas reaction is known
to be an effective tool for such transformation but has some
drawbacks: a stoichiometric amount of Co2(CO)8 is required, and
several steps are necessary to obtain propargylic products from
propargylic alcohols via cationic propargyl complexes [(propargyl)-
Co2(CO)6]+.3 We have recently disclosed the ruthenium-catalyzed
propargylic substitution reactions of propargylic alcohols with
various heteroatom-centered nucleophiles such as alcohol, amide,
amine, thiol, and diphenylphosphine oxide to afford the corre-
sponding propargylic products in high yields with complete
regioselectivities.4 Interestingly, the reactions are catalyzed by
thiolate-bridged diruthenium complexes5 such as [Cp*RuCl(µ2-
SR)2RuCp*Cl] (Cp* ) η5-C5Me5; R ) Me (1a), Et, nPr, iPr (1b))
and [Cp*RuCl(µ2-SiPr)2RuCp*(OH2)]OTf (1c; OTf ) OSO2CF3).4

We have now extended this chemistry to a more valuable carbon-
carbon bond formation reaction by using carbon-centered nu-
cleophiles. Surprisingly, not onlyâ-diketones such as acetyl-
acetone but alsosimple dialkyl ketones such as acetonehave been
found to work effectively as nucleophiles, giving the correspond-
ing propargylic alkylated products in high yields with complete
regioselectivities. Preliminary results on this propargylic alkylation
are described here.

Treatment of 1-phenyl-2-propyn-1-ol (2a) in acetone in the
presence of1a6 (5 mol %) and NH4BF4 (10 mol %) at reflux

temperature for 4 h afforded 4-phenyl-5-hexyn-2-one (3a) in 78%
isolated (85% GLC) yield (Table 1; run 1).7,8 Neither allenic
byproducts nor other regioisomers of3a were observed by GLC
and 1H NMR. The carbon-carbon bond formation exclusively
occurred at the propargylic carbon of2a. The reaction proceeded
even at room temperature, but 8 h was required to produce3a in
64% GLC yield (Table 1; run 2). Substantial isotope effect (kH/
kD ) 2) was observed when the reaction was carried out at 40
°C.9 This result indicates that the C-H bond breaking at the
R-position of acetone is involved in the rate-determining step. It
is noteworthy that the propargylic alkylation of2a with acetone
proceeds smoothlyunder extremely mild and neutral reaction
conditions. This is in sharp contrast to the allylic alkylation
catalyzed by a variety of transition-metal complexes wherea
stoichiometric amount of baseis required to activate carbon-
centered nucleophiles.10

Reactions of various propargylic alcohols with acetone have
been carried out in the presence of1a and NH4BF4. Propargylic
substitution reactions of 1-aryl- and 1-alkenyl-substituted pro-
pargylic alcohols (2b-k) with acetone at reflux temperature for
4 h proceeded smoothly to afford the corresponding propargylic
alkylated products (3b-k) in moderate to high yields (Table 1;
runs 3-12). When (R)-1-phenyl-2-propyn-1-ol was treated with
acetone at room temperature for 12 h, racemic3a was formed in
69% isolated yield. Reaction of 1,1-diaryl-substituted propargylic
alcohols such as Ph2C(OH)CtCH did not proceed even after a
prolonged reaction time (72 h).
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Table 1. Propargylic Alkylation of Propargylic Alcohols (2) with
Acetone Catalyzed by [Cp*RuCl(µ2-SMe)2RuCp*Cl] (1a)a

run R yield, %b run R yield, %b

1 2a Ph 3a, 78 (85)c 7 2f p-MeOC6H4 3f, 56
2d 2a Ph 3a, (64)c 8 2g p-FC6H4 3g, 75
3 2b o-MeOC6H4 3b, 72 9 2h p-ClC6H4 3h, 67
4 2c o-MeC6H4 3c, 74 10 2i 1-naphthyl 3i, 83
5 2d m-MeC6H4 3d, 74 11 2j 2-naphthyl 3j, 88
6 2e p-MeC6H4 3e, 82 12 2k Ph2CdCH- 3k, 55e

a All the reactions of2 (0.60 mmol) were carried out in the presence
of 1a (0.03 mmol) and NH4BF4 (0.06 mmol) in acetone (36 mL) at
reflux temperature for 4 h.b Isolated yield.c GLC yield. d Reaction was
carried out at room temperature for 8 h.e 10 mol % of1a was used.
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Striking regioselectivity was observed when unsymmetrical
simple ketones were used as carbon-centered nucleophiles (eq
1). Thus, the propargylic alkylation occurred at the more

encumberedR-site of the ketones. The reaction at room temper-
ature improved the regioselectivity of the products. This highly
regioselective alkylation of theR-position of unsymmetrical
ketones is of potential use in organic synthesis.11,12

Reactions with other symmetrical dialkyl ketones,â-diketones,
and silyl enol ethers have been investigated. Typical results are
shown in Table 2. When the reactions of2a with 3-pentanone,
cyclopentanone, and cyclohexanone were carried out at 60°C
for 4 h, a mixture of two diastereomeric isomers was obtained in
71%, 52%, and 75% yields, respectively (Table 2; runs 1-3).
Treatment of2awith 3 equiv ofâ-diketones and a silyl enol ether
in ClCH2CH2Cl at 60°C for 4 h gave rise to the formation of the
corresponding propargylic alkylated products in good yields,
respectively (Table 2; runs 4-8).

Reaction of1a with 1 equiv of propargylic alcohols (2) in the
presence of NH4BF4 in tetrahydrofuran (THF) at room temperature
for 30 min afforded the allenylidene complexes [Cp*RuCl(µ2-
SMe)2RuCp*(CdCdCHAr)]BF4 (Ar ) Ph (4a), Ar ) o-CH3C6H4

(4b)) in moderate yields (eq 2).4 Heating of the allenylidene

complexes (4a, 4b) in acetone at reflux temperature for 3 h led
to the formation of 3a and 3b in 28% and 32% yields,
respectively. Interestingly, when the reaction of4b with acetone
was performed in the presence of 1 equiv of2a, the yield of3b
was improved to 47% together with the formation of3a in 42%
yield. Furthermore, reaction of2b with acetone in the presence
of 5 mol % of 4b at reflux temperature for 3 h afforded3b in
99% yield. These results indicate that the propargylic alkylation

proceeds via the nucleophilic attack of an enolate carbon on the
electrophilic Cγ atom in allenylidene intermediates13 like 4, but
the detailed reaction mechanism involved in this reaction still
remains unknown. Further investigations are currently in progress.

In summary, we have found novel ruthenium-catalyzed pro-
pargylic alkylation of propargylic alcohols with various ketones
under mild and neutral reaction conditionsto afford the corre-
sponding propargylic alkylated products in high yields with
complete regioselectivities. This provides a versatile propargylic
alkylation method directly from propargylic alcohols with ketones
and ketone derivatives to afford the correspondingγ-keto
acetylenes, which are very useful synthetic intermediates because
of their regioselective convertibility to 1,4- and 1,5-diketones and,
subsequently, to cyclopentenones and cyclohexenones.
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Table 2. Propargylic Alkylation of2a Catalyzed by1a

a Isolated yield.b Reaction of2a (0.60 mmol) with ketone (36 mL)
was carried out in the presence of1a (0.03 mmol) and NH4BF4 (0.06
mmol) at 60°C for 4 h. c Two diastereoisomers were formed with the
isomer ratio of 63:37.d Two diastereoisomers were formed with the
isomer ratio of 85:15.e Two diastereoisomers were formed with the
isomer ratio of 70:30.f Reaction of2a (0.60 mmol) with 3 equiv of
nucleophile was carried out in the presence of1a (0.03 mmol)
and NH4BF4 (0.06 mmol) in ClCH2CH2Cl at 60 °C for 4 h. g FcCH-
(OH)CtCH (Fc ) ferrocenyl) was used in place of2a.
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